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Turbulence and Coarsening in Active and Passive Binary Mixtures
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Phase separation between two fluids in two dimensions is investigated by means of direct numerical
simulations of coupled Navier-Stokes and Cahn-Hilliard equations. We study the phase ordering process
in the presence of an external stirring acting on the velocity field. For both active and passive mixtures we
find that, for a sufficiently strong stirring, coarsening is arrested in a stationary dynamical state
characterized by a continuous rupture and formation of finite domains. Coarsening arrest is shown to
be independent of the chaotic or regular nature of the flow.
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When a binary fluid mixture at the critical concentration
is cooled from a high temperature to a sufficiently low
temperature (below a critical one), the original homoge-
neous phase becomes unstable and spontaneously evolves
into two phases separated by an interface. As time advan-
ces, an out-of-equilibrium process of phase ordering takes
place through the formation of domains of a single phase
that grows algebraically in time [1]. In fluids, the presence
of a hydrodynamic velocity field makes this process more
complicated than the corresponding one in solid alloys. For
instance, since Siggia’s seminal work [2], it is well known
that hydrodynamics may accelerate the domain growth
(see Refs. [3,4] for recent developments in three- and
two-dimensional fluids, respectively). Phase ordering dy-
namics becomes even more complex and less understood
when the fluid mixture is externally driven [5,6]; beyond
their theoretical interest, phase separating binary fluids
under flow embody a great technological interest [7] for
their distinctive rheological properties. This problem has
been extensively investigated in shear flows [§—11] where
coarsening becomes highly anisotropic: the single-phase
domain growth accelerates in the shear direction, while in
the transversal one the growth is arrested [10,11] or
strongly slowed down [9]. Less clear is the case in which
the mixture is stirred by a turbulent flow [7,12—-14]. Here,
phase separation may be completely suppressed [13] or a
dynamical steady state with domains of finite length and
well-defined phases may develop [6,14]. A similar phe-
nomenology has been experimentally observed in stirred
immiscible fluids [15]. This Letter aims to clarify the
nature of the nonequilibrium steady state, characterized
by the continuous rupture and formation of domains.

Previous investigations focused on passive binary mix-
tures (when the feedback of the phase ordering on fluid
velocity is neglected) in random flows [16] and in chaotic
flows [17] (in a Lagrangian sense, i.e., two initially very
close particles separate exponentially in time [18]). Here
we focus on the phase ordering dynamics of active two-
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dimensional binary mixtures in which the fluid is driven by
chemical potential inhomogeneities [6]. By means of nu-
merical experiments we show that coarsening arrest is a
generic and robust phenomenon, whose existence can be
understood by an energy conservation argument. More-
over, we show that in the passive limit Lagrangian chaos
is not necessary for coarsening arrest.

In the presence of stirring, the main question concerns
the competition between thermodynamic forces, driving
the phase segregation, and fluid motion, leading to mixing
and the domain’s breakup. For very high flow intensities,
phase separation can be completely suppressed [12,13] due
to mixing of the components and inhibition of interface
formation. In active mixtures with very low viscosity, such
a phenomenon may be self-induced by the feedback [4,19]:
the fluid responds vigorously to local chemical potential
variations and remixes the components. On the other hand,
stirring may lower the critical temperature [5,14,20].
However, by performing a deeper quench, phase separa-
tion in a nontrivial statistically stationary state may still
develop [6].

Being interested in deep quenching, here we work at
zero temperature, as in Refs. [16,17]. We consider a sym-
metric (50%-50%) mixture of two incompressible fluids of
equal density p = 1 and viscosity v. Such a bicomponent
system is described by a scalar order parameter 6(r, ), the
local fraction of the two fluids. The associated Landau-
Ginzburg free energy reads [1]

4

where ¢ is the equilibrium correlation length, which pro-
vides a measure of the interface width. The dynamics is
then governed by the Cahn-Hilliard equation:
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where u = —6 + 6% — £2V?6 is the chemical potential,
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and I' is a mobility coefficient that we assume constant and
independent of #. Hydrodynamics enters in Eq. (2) through
the convective term. The order parameter is transported by
the two-dimensional velocity field v, which evolves ac-
cording to the Navier-Stokes (NS) equation

dv+v-Vo=vVo—-Vp—0Vu + f, 3)

where p is the pressure. The fluid is forced by the external
mechanical force f and by local chemical potential varia-
tions —OV w (the two phases want to demix and thus force
the fluid; see also Ref. [3] for a detailed derivation). This
latter term can be rewritten as —&2V20V# plus a gradient
term which can be absorbed into the pressure [6].
Therefore Eq. (3) formally reduces to the 2D magnetohy-
drodynamics (MHD) equation for the velocity field.
Actually, phase ordering and MHD share many phenome-
nological properties [6].

We numerically integrate the coupled equations (2) and
(3) by means of a standard pseudospectral code imple-
mented on a two-dimensional periodic box of size 27 X
27 with 5122 collocation points. Statistical analysis of
domain sizes is obtained by considering the characteristic
length, defined as L(7) = {(1 — #%))"', where (---) de-
notes spatial average [21]. The initial condition for the
order parameter is a high temperature configuration with
6 set as white noise in space. In the presented results, time
is rescaled with the diffusive time t,, = &2/T.

Unstirred case.—Starting from the initial configuration
with the fluid at rest (v = 0), after a few diffusive time
scales t,,, sharp interfaces appear and phase separation
proceeds through domain coarsening. At long times, the
domains length L—the only characteristic scale of the
system (provided L > £)—grows in time as a power
law [1]. In 2D different regimes have been predicted and
observed [4]: L(r) ~ ¢'/3, as in fluids at rest, for high
viscosity; L(z) ~ 2/3 for lower viscosities. At intermediate
values of viscosity it is still unclear whether there is only
one characteristic scale [4]; for » << 1 and low mobility
I' < 1 mixing may overwhelm phase demixing [19]. In the
following, we will limit our analysis to the turbulent, low
viscous regime where the scaling exponent 2/3 is ex-
pected. This exponent can be dimensionally derived by
balancing the inertial term v - Vv with 8V in (3), and
assuming that L(z) is the only length scale of the system.
The scaling behavior of L(z) implies the following ones for
the kinetic energy and the enstrophy [3]: K = (v?)/2 ~
1723 and Q = (w?)/2 ~ t75/3 (w = V X v is the vortic-
ity). Figure 1 shows that the scaling predictions are well
reproduced by our direct numerical simulation (DNS). We
remark that, in the absence of stirring, phase separation is
accelerated by the presence of hydrodynamics.

Stirred case.—We now consider the presence of an
external mechanical forcing acting on the velocity field.
As is customary in turbulent simulations, energy is injected
by means of a random, time uncorrelated, homogeneous,

FIG. 1 (color online). (a) L(#) vs ¢ obtained by DNS of (2) and
(3) with ¢ =10.015, » =103, without external forcing.
(b) Kinetic energy XK = (v?)/2 (bottom) and enstrophy () =
{w?)/2 (top) vs ¢ in the same run.

and isotropic Gaussian process with amplitude F' which is
restricted to a few Fourier modes around k (this identifies
the injection scale €, ~ 27/k;). The & correlation in time
allows for controlling the kinetic energy input €,, = F’n y
(ny being the number of excited Fourier modes).
Equations (2) and (3) are integrated starting with v = 0.
In Fig. 2 we show typical snapshots of the order parameter
at different flow intensities, and for two random forcings
with €, = 26¢ and €, =~ 84¢. As it is evident, the stronger
the stirring intensity, the smaller the typical domain length.
This is confirmed by the temporal evolution of L(r) at
varying the external forcing (Fig. 3). After an initial growth
characterized by the 2/3 scaling exponent, L() stabilizes
at a value L™ that decreases with the stirring intensity. Both
the kinetic energy K () and the enstrophy )(¢) (not shown
here) stabilize at corresponding values. Therefore a well-
defined statistically steady state is reached.

A closer inspection of Fig. 2 reveals qualitative differ-
ences in domain shapes. When L* is larger than the forcing
scale €  (left) the domains are almost isotropic, while in the
case L* < {; (right) the underlying velocity field reveals
itself through the filamental structure of the domains.
Nevertheless, coarsening process is always arrested con-
firming the robustness of the phenomenon. Stirring always
selects a scale through the competition between the ther-
modynamic forces and the stretching induced by local
shears that deform and break the domains. Estimating the
shear rate as y = u,,/L"* we find that, for the case with
L* <4y, L* ~ y~ %% (see inset of Fig. 3), in fairly good

FIG. 2. Snapshots of € at time ¢ = 4000 at varying the forcing
intensity F' with €, = 26¢ (left) and £, = 84¢ (right). Black/

white codes § = *1. Other parameters are as in Fig. 1
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FIG. 3 (color online). L vs ¢t at varying F, from top F =0
(thick curve) and F = 0.05,0.10,0.15, ..., 0.30. Data refer to
DNS with €, = 84¢ (the case with €, = 26¢ is qualitatively
similar). The straight line displays the scaling r2/3. Inset: L* vs
Uyns/L*; the straight line has slope —0.29 the point size is of the
order of the statistical error.

agreement with experiments and simulations in pure shear
flows [11]. However, we should mention that in our set-
tings, homogeneous and isotropic flows, there is not a well-
defined rate y as in genuine shear flows. The definition
adopted here is a dimensional estimation of the shear rate
at the arrest scale. In the case L* = €, no clear scaling
behavior is observed.

The existence of a stationary state can be understood in
terms of conservation laws. Because of the presence of two
inviscid quadratic invariants, JC and (), the single-fluid 2D
NS equation [i.e., (3) without the feedback term] is char-
acterized by a double cascade [22]: K flows toward the
large scales (r > €;) and () toward the small ones (r < €).
By switching on the coupling term, the following balance
equation for the total energy E = K + & holds [23]:

W Vel TV + e @
In the unstirred case (€, = 0) an equilibrium state is
asymptotically reached, corresponding to fluid at rest
v = 0 and complete phase separation (minimum of free
energy). In this case the velocity has only a transient role,
determining the scaling of the coarsening process. On the
contrary, if €;, # 0, a nontrivial stationary state stems from
the balance of dissipative and input terms on the right-hand
side of (4). It is worth mentioning that when the stirring
intensity becomes high enough to overcome the feedback
term, the kinetic energy dissipation induced by the |V u|?
term is no more effective. Indeed, when €f is much larger
than ¢ and F is very high, the coupling term becomes
negligible and we observe the single-fluid phenomenology
with an inverse energy cascade.

Passive binary mixtures.—We now consider the case in
which the coupling term in (3) is switched off and con-
sequently the order parameter is passively transported by
the velocity field. This case has been already considered in
[16,17]. In order to obtain a statistically stationary state, as
is customary, we added a large scale friction term —awv to
the Navier-Stokes equation [24]. The velocity field in (2) is

rescaled by a factor B; this is a numerically convenient way
to change the velocity intensity and to study the effect of
stirring on coarsening. For 8 = 0, Eq. (2) recovers the
Cahn-Hilliard equation in a fluid at rest for which L(¢) ~
1'/3. For B > 0, we observe the following phenomenology
[Fig. 4(a)]. For small values of 8 (weak stirring) we did not
find clear evidence of coarsening arrest. This is likely due
to finite size effects hiding the phenomenon; i.e., L* be-
comes comparable with, or even larger than, the box size.
For B large enough (strong stirring), the existence of an
arrest scale L™ (that decreases with B) is well evident.

Previous studies stressed the importance of Lagrangian
chaos in the coarsening arrest phenomenon [17]. Now, in
order to elucidate this point, we discuss a nonchaotic
example. It is well known (see, e.g., [18]) that two-
dimensional stationary flows do not generate chaotic tra-
jectories. We have thus integrated (2) in a frozen configu-
ration of the turbulent velocity field: v(x, 1) = v(x). As
shown in Fig. 4(b), domain growth is strongly weakened
and finally arrested, even in this nonchaotic flow. For
moderate velocity intensities, L(z) still grows in time, but
with a much slower scaling law than the dimensional
prediction for fluids at rest, 7'/3. This slowing down is
probably due to a different growth mechanism: after an
initial transient, a slow process of droplet passage among
close domains is indeed observed. However, for high
enough intensities a complete stabilization of the domain
length is realized. This suggests that the main ingredient
for coarsening arrest is the presence of local shears that
overwhelm the surface tension driving force. The depen-
dence of L* on the shear rate (here naturally defined as B)
is shown in the inset of Fig. 4(b). We find a power law
behavior with exponent —0.28 very close to the one ob-
served in the active case and in shear flows [11], while in
the chaotic case no clear scaling is observed.

To further support the marginal role of Lagrangian chaos
in coarsening arrest, we report the results obtained in a
stationary regular cellular flow [v, = U sin(Kx) cos(Ky),

(@ N (b)
10! 8 ¢

10° 10 0 104 2x10*

FIG. 4 (color online). Results of DNS in the passive case. (a) L
vs ¢t with (from top) B8 = 0.25, 0.5, 1, 2, 4. Forcing parameters are
k; =70 and F =3 X 107>, The straight line has slope 1/3.
(b) Same as (a), in linear scale, for a frozen velocity field (see
text), from top B = 1,2, 4, 10. Inset: L* vs B; the straight line
corresponds to L* ~ 87928; the point size is of the order of the
statistical error. DNS were performed with hyperdissipation
—v,A%v with v, = 1077, and friction coefficient a = 0.1.
The parameters of Eq. (2) are ¢ = 0.015, I' = 0.02.
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FIG. 5. (Left) Snapshots of 8 at t = 6 X 10* for the cellular
flow with different U and K = 8; here & = 0.018, I' =0.1.
(Right) L vs t, from top to bottom U = 0, 0.125, 0.25, 0.5, 1.0,
2.0, 4.0. Inset: the same in linear scale.

v, = —U cos(Kx) sin(Ky)] where U fixes the velocity am-
plitude and K the characteristic scale. As shown in Fig. 5
(left), for large intensities the order parameter is frozen into
a random chessboard pattern with a finite length. At lower
intensities a growth much slower than in the absence of the
flow is still visible [Fig. 5 (right)] coming from a slow
droplet migration from one cell to another. At large U’s the
shear between the counter-rotating vortices overwhelms
the demixing induced by the thermodynamic forces, break-
ing the domains which freeze into the cells.

In conclusion, we have shown that in the presence of an
external stirring the coarsening process is slowed down for
both active and passive mixtures. We have also demon-
strated that the phenomenon of coarsening arrest, first
predicted in [6], does not necessarily require a chaotic
flow, as suggested in [17], but is a consequence of the
competition between thermodynamic forces and stretching
induced by local shears. Our investigation on both active
and passive mixtures shows that this behavior is robust.
Moreover, we found numerical evidence that the depen-
dence of the arrest scale on the shear rate follows a power
law behavior with an exponent close to the one measured in
experiments and numerical simulations in pure shear flows
[11]. Our results might suggest the existence of a mecha-
nism independent of the nature of the flow in the coarsen-
ing arrest. Further numerical and experimental investi-
gations, with the aim of clarifying the dependence of the
arrest scale on the flow properties, would be extremely
interesting.
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