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Random walk of a swimmer in a low-Reynolds-number medium
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Swimming at a micrometer scale demands particular strategies. When inertia is negligible compared to viscous
forces, hydrodynamics equations are reversible in time. To achieve propulsion, microswimmers must therefore
deform in a way that is not invariant under time reversal. Here, we investigate dispersal properties of the microalga
Chlamydomonas reinhardtii by means of microscopy and cell tracking. We show that tracked trajectories are
well modeled by a correlated random walk. This process is based on short time correlations in the direction
of movement called persistence. At longer times, correlation is lost and a standard random walk characterizes
the trajectories. Moreover, high-speed imaging enables us to show how the back-and-forth motion of flagella at
very short times affects the statistical description of the dynamics. Finally, we show how drag forces modify the
characteristics of this particular random walk.
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Cell motility [1] is crucial to many biological processes
including reproduction, embryogenesis, and infection. Many
microorganisms, for example, bacteria, sperm cells, and
microalgae, are able to propel themselves. A quantitative
understanding of the hydrodynamics of flagella and cilia is
thus of great interest [2,3].

One of the peculiarities of the swimming of microorganisms
is that it occurs at very low Reynolds numbers, which is
very different from our usual experience of swimming at our
meter length scale [4,5]. Indeed, when inertia is negligible as
compared to viscous forces (i.e., Reynolds number Re is lower
than unity), in order to achieve propulsion, swimmers must
deform in a way that is not invariant under time reversal. This
is known as Purcell’s scallop theorem [4]. In living systems,
several different strategies are used to achieve propulsion in
such conditions: The E. coli bacterium uses a rotating flagellum
at the “back” of its body, sperm cell propulsion relies on the
asymmetry of their flagellar bending waves, the power and
recovery strokes of the two front flagella of Chlamydomonas
reinhardtii (CR) algae are asymmetrical.

Flagellar propulsion in CR induces complex swimming
behavior of cells. Over short time scales, the cells undergo
an oscillating movement with changes in velocity direction
occurring at the same frequency as the beating frequency of
flagella. On a time scale longer than the period of beating,
average swimming behavior is directional. Eventually, on
larger time scales, direction is lost and swimming trajectories
resemble a random walk.

CR is a 10-μm motile biflagellated unicellular alga. The cell
is spheroidal in shape with two anterior flagella [6]. It belongs
to the puller type of swimmers as it uses its front flagella
to propel itself, producing a breaststrokelike movement.
The swimming direction of the cells can be controlled by
stimulus gradients, a phenomenon known as taxis, such as
chemotaxis, rheotaxis, or phototaxis. Gradients are not used
in our experiments in order to avoid any external tropism on
the motility. Wild-type strains were obtained from the Institut
de Biologie Physico-Chimique (IBPC) laboratory in Paris [7].
Synchronous cultures of CR were grown in a Tris-acetate phos-
phate medium using a 12-h/12-h light/dark cycle at 22 ◦C.
Cultures were typically grown for two days under fluorescent
lighting before the cells were harvested for experiments.

We studied the swimming dynamics of this microorganism
by means of bright field microscopy imaging on an Olympus
inverted microscope coupled either to a charge-coupled device
(CCD) camera (Sensicam, Photon Lines) used at a frame rate
of 10 Hz or to a high-speed CCD camera (Miro, Phantom)
used at a frame rate of 400 Hz. Long time experiments used
a ×10 magnification lens, whereas we used a ×64 lens for
high-speed imaging. Glass chambers (200 μm thick) were
coated with bovine serum albumin to prevent cell adhesion.
The imaged cells were located 30–60 μm from the glass walls.
A red light filter was used in order to prevent phototaxis. Cell
tracking [8] was performed using Interactive Data Language
with a submicron precision in the detection of hundreds of cells
(high-speed experiments) and thousands of cells for long time
sequences. To quantify the effect of drag on the cell dynamics,
small amounts of short chain dextran (Sigma Aldrich) were
added to the culture medium. The chains were short enough
for non-Newtonian effects to be absent and long enough to
avoid damaging the cells with osmotic effects. This allowed
the viscosity η of the medium to be varied between 1.5 and
3.7 mPa s. The range of viscosity is restricted to this interval
to ensure the viability of the cells.

Let us first recall the global dynamics of swimming, that is,
over time scales of the order of a few seconds. Cell trajectories
are found to be correctly modeled by a persistent random walk
[9–11]. Cells swim in an almost fixed direction for a typical
time of about 1 s. This stage corresponds to a ballistic regime
characterized by a mean velocity V . The ballistic regime ends
when the swimmers make a turn. A new direction of motion
is then observed due to the desynchronization of the pair of
flagella [12]. At long time scales, the dispersal properties of
the swimmers are randomlike [13,14]. To describe this specific
random walk quantitatively, we measured different statistical
quantities of interest. Let us first define a persistence angle
θ (t) = arccos[k̂(t0) · k̂(t0 + t)], where k̂(t) is a unitary vector
in the direction of movement at time t . Thus, a value of θ

close to zero reflects a certain persistence of the trajectory.
We measured the probability distribution function of angles θ

for different times t . At short time scales, angle distribution
peaks at around zero, characterizing the directional persistence
in swimming trajectories. Over longer times, we observed a
broadening of the distribution and eventually we ended up
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FIG. 1. (Color online) (a) Probability distribution functions of
angles θ = arccos[k̂(t0) · k̂(t0 + t)] for different times t ranging from
0.05tc to 3.33tc. Here tc = 2.3 s and the viscosity of the medium is
2.4 mPa s. Only few data points are displayed for the sake of clarity.
(b) Correlation functions of direction C(t/tc) as defined in the text
(log-lin scale). Time has been rescaled by the decaying time of an
exponential. The different symbols correspond to the viscosities used
by varying the concentration of dextran.

with an equidistribution of angle values characteristic of a
random walk [Fig. 1(a)]. This phenomenon is even better
quantified by looking at the mean value of angle distribution
or equivalently at the correlation function of direction defined
as C(t) = 〈k̂(t0) · k̂(t0 + t)〉, where 〈·〉 is an average over time
t0 and over all tracked trajectories. Correlations with infinite
decay time [C(t) = 1 for all (t) > 0] correspond to direction
correlations preserved over arbitrarily long times, that is, a
purely ballistic regime, whereas a zero lifetime [C(t) = 0 for
all (t) > 0] corresponds to standard random walk behavior
[Fig. 1(b)]. The correlation functions decay exponentially over
a characteristic time tc. This correlation time tc is related to the
mean time of persistence over which the direction of swimming
is preserved. The different symbols in Fig. 1(b) correspond to
experiments where the concentration of short chain dextran
was varied, hence modifying the viscosity of the medium from

1.5 to 3.7 mPa s. As viscosity increases, correlation time tc
increases (data not shown) from 1.5 to 3.9 s.

The global dynamics of swimming of CR can thus be
described as a correlated random walk characterized by a
ballistic regime (with a mean velocity V ) and a decorrelation
process (over a characteristic time tc) due to the turns made
by the cells. As a consequence, a persistence length L is
naturally defined as the product V tc. From a statistical point
of view, such a behavior is described by the mean square
displacement of cells 〈r2(t)〉, which is linear for long times
(t � tc) and quadratic at shorter times (t � tc) [13,14]. At
even shorter times, the dynamics reflect the consequences of
low Reynolds swimming, that is, a nonreciprocal movement
of flagella. This then leads to a zigzagging motion of cells due
to the back-and-forth motion of flagella [15].

In the present case, cells of diameter 2R ∼ 10 μm are
moving at a velocity V around 50 μm/s in a waterlike
medium (viscosity η ∼ 1 mPa s and density ρ ∼ 103 kg/m3).
This represents a very low Reynolds number of the order of
Re = ρV R/η ∼ 2.5 × 10−4. The propulsion strategy of CR
consists in swimming in a kind of breaststroke where the pair
of flagella are wide open during the forward movement and
folded along the cell body during the backward movement
[16]. Hence, viscous friction is high when the pair of flagella
are fully extended during the forward movement and friction
is lower during the backward movement. The symmetry
under time reversal is thus broken and propulsion is ensured.

FIG. 2. (Color online) Mean square displacements 〈r2(t)〉 of cells
as function of time for different viscosities of the medium. The
different symbols represent different bath viscosities. The legend
for symbols is the same as in Fig. 3(b). The solid lines represent
a slope 2 and the dotted line a slope 1 in a log-log scale. Typical
two-dimensional (2D) trajectories of a few cells are displayed in the
insets. In the top left inset, cells are swimming in the nutritive medium
(viscosity η = 1.5 mPa s), in the lower right corner, the medium is
rich in dextran (η = 3.7 mPa s). Trajectories are represented on the
same scale for better comparison and both lasted 0.5 s; their starting
positions were all shifted to the origin.
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However, because inertia has no role in this regime, this kind
of propulsion leads to a back-and-forth movement of the cell
in which the velocity is alternatively positive and negative.
High-speed imaging (400 Hz) allows us to resolve the very
short time dynamics due to flagella beating and thus to study
the consequences of this back-and-forth movement on the
properties of the swimmers’ random walk.

The insets in Fig. 2 show typical cell trajectories imaged
at 400 Hz: The back-and-forth movement of swimmers due
to the absence of inertia (Re � 1) together with the long
time swimming behavior are visible. In these examples, the
cells are swimming either in a nutritive medium of viscosity
η = 1.5 mPa s (top left inset) or in a dextran-rich medium
of viscosity 3.7 mPa s (bottom right inset). Cells have a

FIG. 3. (Color online) (a) Probability distribution functions of
angle θ at short time scales ranging from t = 1/(28f ) to t = 1/f . In
these experiments, cells are swimming in a medium of viscosity
η = 2.4 mPa s so that their beating frequency is f = 14.3 Hz.
(b) Correlation functions of direction as defined in the text. Time has
been rescaled with the period 1/f of the signal, which corresponds
to the beating frequency of flagella. Symbols correspond to different
viscosities of the medium. The solid line represents the function
cos(2πt#) exp(−t#).

net forward movement corresponding to the power stroke,
followed by the recovery stroke that propels the cell backward.
As the distance traveled forward is longer than the backward
movement, the cells ultimately progress forward. However,
these fluctuations in the direction of the velocity have con-
sequences on the measured statistical quantities [17] that we
discuss now.

The measured mean square displacement 〈r2(t)〉 shows a
plateau region at very short time (t � tc) that reflects the tran-
sition between two quadratic regimes: on the one hand, a fast
ballistic regime characterized by the instantaneous velocity u

of swimmers and, on the other hand, a slower ballistic regime
corresponding to the mean velocity V of swimming which
is the resulting forward velocity over several back-and-forth
movements. The position of the plateau therefore corresponds
to the beating frequency f of the swimmer, which depends
on the viscosity of the surrounding medium. To quantify the
back-and-forth swimming motion of the cells, we measured

FIG. 4. (a) Beating frequency, obtained from the period of
oscillations in the correlation functions of directions, versus the
inverse viscosity of the medium. (b) Mean modulus of velocity
u as a function of the inverse viscosity of the medium. Solid
lines represent linear regression giving: ηf = 0.045 ± 0.01 Pa and
ηu = 0.15 ± 0.04 Pa μm
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the angle probability distribution function. Figure 3(a) shows
distribution functions for different times. For a given short
time t , the distribution of angles θ (t) as defined earlier, peaks
at around zero, reflecting a given direction at very short time.
For longer time scales (close to 1/2f ), anticorrelation in cell
direction resulted in new distribution peaks at values of around
±π . When a new stroke is produced, the measured angle is
again close to zero, giving rise to a peak around zero. Hence,
angle distributions have a periodicity which reflects the beating
frequency. This is shown in Fig. 3(a) as the distributions are
very similar at times shifted by 1/(2f ), where the typical
frequency of the beating f is deduced from the periodical
nature of the correlation function of direction. Figure 3(b)
shows such correlation functions at varying f t , the product of
time multiplied by the fitted frequency of the signal. Data are
well described by an exponentially attenuated cosine function.
The different symbols correspond to different viscosities of
the medium. The exponential decay of the correlation function
should reflect the turns in direction the cells eventually perform
within a characteristic time tc. However, due to the 3D nature of
the trajectories and the 2D geometry of our setup, correlation
was attenuated faster than that.

The other consequence of the fact that swimming is
produced at low Reynolds number is that propulsion requires
nonzero drag forces. Viscous friction is thus crucial in
the dynamics of microswimmers. By varying the viscosity of
the medium, we were able to draw some conclusions about the
effects of friction forces on the locomotion of microorganisms
such as this microalga.

Here, short time dynamics of swimming can be fully
described by few mean quantities: flagella frequency beating
f [deduced from a cosine fit in Fig. 3(b)] and the mean
modulus of instantaneous velocity u, which is the velocity
achieved during a power or a recovery stroke. We studied
the effects of viscous forces on these quantities. Velocities
and beating frequency are found to be inversely proportional

to the viscosity of the bath (Fig. 4). As viscosity increases,
the beating frequency decreases, varying from 30 to 13 Hz
with a viscosity variation from 1.5 to 3.7 mPa s [Fig. 4(a)],
giving a slope ηf = 0.045 ± 0.01 Pa. Accordingly, velocity
decreases from 135 to 75 μm/s [Fig. 4(b)] giving a slope
ηu = 0.15 ± 0.04 Pa μm. These results support the idea
of imposed-force locomotion [14]. The corresponding stall
force, which is proportional to the product η × u, is then
constant.

The velocity u can be related to the mean propulsion force
on the cell body by Stokes’ law. Let us now assume that a power
stroke (recovery stroke) results from the friction length ξ⊥ (ξ‖)
of the flagella moving perpendicular (parallel) to its long axis.
Moreover, the beating frequency f can be related to the friction
of flagella acting on a typical distance of one cell diameter:
6πηRu = 2Rf η(ξ⊥ + ξ‖). Using measurements of the slopes
ηu and ηf , we can estimate a sum ξ⊥ + ξ‖ ∼ 32 μm. Using the
friction coefficient expressions of a cylinder given in [18], this
leads to an aspect ratio of 200 for a 10-μm-long flagellum with
a radius of 25 nm. This is a reasonable estimate [6] considering
that flagella are not exactly perpendicular and parallel to the
flow during power and recovery strokes.

In this work, we quantified the complex dynamics of
swimming at short time scale using high-speed microscopy
imaging and particle tracking techniques. This study allowed
us to analyze the breaststrokelike swimming of a CR cell in
a fluid at low Reynolds number and how this swimming is
influenced by the viscosity of the ambient fluid. It showed how
the friction acting on a CR cell can be qualitatively extracted
from the back-and-forth motion of a thin and elongated pair
of flagella. This means that a description in terms of time
averaged flows is not to be encouraged for such systems [3,19].
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[15] W. N. U. Rüffer, Cell Motil. Cytoskeleton 5, 251 (1985).
[16] D. Ringo, J. Cell Biol. 33, 543 (1967).
[17] F. Peruani and L. G. Morelli, Phys. Rev. Lett. 99, 010602

(2007).
[18] M. Tirado, C. Martinez, and J. Delatorre, J. Chem. Phys. 81,

2047 (1984).
[19] J. S. Guasto, K. A. Johnson, and J. P. Gollub, Phys. Rev. Lett.

105, 168102 (2010).

035301-4

http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1103/Physics.3.84
http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1098/rspa.1951.0218
http://dx.doi.org/10.1006/jcis.1996.0217
http://dx.doi.org/10.1098/rsif.2008.0014
http://dx.doi.org/10.1098/rsif.2008.0014
http://dx.doi.org/10.1007/BF02476407
http://dx.doi.org/10.1103/PhysRevLett.99.048102
http://dx.doi.org/10.1126/science.1172667
http://dx.doi.org/10.1103/PhysRevLett.103.198103
http://dx.doi.org/10.1103/PhysRevLett.104.098102
http://dx.doi.org/10.1103/PhysRevLett.104.098102
http://dx.doi.org/10.1002/cm.970050307
http://dx.doi.org/10.1083/jcb.33.3.543
http://dx.doi.org/10.1103/PhysRevLett.99.010602
http://dx.doi.org/10.1103/PhysRevLett.99.010602
http://dx.doi.org/10.1063/1.447827
http://dx.doi.org/10.1063/1.447827
http://dx.doi.org/10.1103/PhysRevLett.105.168102
http://dx.doi.org/10.1103/PhysRevLett.105.168102

